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1.‘ Modeling of the LST System with-the'CMG Confro] Loop

The purpose of this section is to study the dynamics of_the_LST confro]
system, and to arrive at a simplified model for computer simulation wi thout
loss of accuracy. .A dynamic model for the LST control system with the
compiete CMG control loop is shown in Figure 1-1. Gther than the CMG
npnlinearity mbdei lthis system is essentiaTTy the same as that in reference

[1]. It should be noted that the limits on the current command , the gimbal

" rate command, and the torque amp11f1er voltage, have been neglected The

model also assumes a second-order pure inertia] vehicle dynamics. The
cogging terque, ripple torque,Aand the tachometer ripp1e'of the CMG‘are
also neg1ected | o |

Since the LST control system has a sample-and- hon in the forward path,
discrete-data system theory should be used when studying.tne system's
behavior. However, becaese of the-compiexity.of the CMG ndn]inearity, an
anaiytica] study'of the entire system is quite_compTex., The.present task
calls for two approaches to the analytical study of the stabiiity of the
systeﬁ, The first analysis involves the assumption that the samb]ing.rate
of the system is high, so that the systeh may be approximated by a continuous-
data system. Thfs is accomplished simply by ehorting out the sample-and»
hold in Figure 1-1. The second approach involves the insertion of a
fictitious sample-and-hold af the input of the nonlinearity. This way;
the system has two synchrohized samb1ers, and discreteFdate techniquee such

as the discrete-describing funetioh method may be used.'

Characteristic Equation and Eigenvalues of the Continuous-Data LST

In this section the LST system modeled in Figure T~1 is considered to~

be of continuous- data, that 1s, without the samp1e—and—ho]d I we

and

represent the input~ output relat1on of the CMG nonlinearity between BG
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Figure 1-1. A dynamic model for the LST control system with the complete MG contro'l Toop.



TGF by an equivalent gain N, we can derive the characteristic equation
and determine the eigehva]ues of the linear pprtion'of the system.

The characteristic equation and the eigenvalue studies of the system allow

. us to gain understanding of the dynamic“behavior of . the system, and

eventually lead to the Simp]ification of the system model.

- With reference to'Figufe 1-1, the characteristic équétion of the

continuous model of the system for stability analysis may be‘obtafned_

from the following equation:

1+ I Loop gains = 0 . : o (1-1)
Or, ’
1+ N(1 + 6,6 )GG + W26 6, + G.GK K+ 6,6y
48575 6% * G50 BKT 5
- . 2.~ _ )

Dividing both sides of the last equation'by‘the terms which. do not contain.

N, we arrive at the equation which is of the form,

1+ N6(s) = 0 o (1-3)
" where ‘ |
Ge (146, 6;) S
| _ Gl MGG
G(s) = == | | | - (1-4)
Sk
and
dg = 1+ HGglg * Gs 6 8KBKT ¥ G4G5 * G3G4 5% -
B = Ko+ Kys
K
_ I
G = xs¥K



K st

6, = 2L
-3 KTs.
' K (1+4T.s) ' . .
- CLI' ™ . -
Gy = s 1+T2§7ﬁ"_' . . (1-6)
6 = 1 -
5 Rmi1+TEs]
]
G [ .
6 JGs
6 =H
7 z
J s
v
i} s
Gg =

IOAS +D0AS+KOA
The following system parameters are'given:

H = 600 ft-Tb~sec CMG Angular Momentum
= 2.1 ft-lb-secZ  Gimbal inertia

Ig |

IOA = 2.] ft—1b~sec2 CMG output axis inertia.

Doa = 20 ft-Tb-sec CMG output axis damping VA

Koa = 106 fop | CMG output axis spring constant
Ky = 5.75835X10° vehicle controller coefficient

Ky = 1,37102X]03‘ th1c1e'contro11er coefficient

~
]

T ‘2.5 ft-1b/aﬁp Torque motor sensitivity

-~
|

p = 3.4 volts/rad/sec Torque motor back emf constant

4.4 ohms Torque motor armature resistance

E 6.4 milliseconds Torgue motor armature time constant

Fa — )
H

1]

216 ft-ib/rad/sec Gimbal rate Toop proportional gain



K; = 9700 ft-1b/rad:  Gimbal rate loop integral gain

‘KCLI = 1.6x10% volts/sec/amp Current loop integral gain

Ty = 6.4 milliseconds Current loop Tead time constant
T2 = 0.16 milliseconds Current loop lag time constant
J=10° ft-ibfsecz Vehicle inertia

- The numeratdf of Eq. {1-2) may be regarded as thefcharacteristic
equation'of the ovefai] system. Let us consider that thé.CMG is withput
- the nonlinear fricffon,chearcteristics. The ovér311 LST system is linear,
and the characteristic equation is given byl '

by = 0 ' : (1-7)

Substituting Eq. (1?6) into Eq. (1-5), and simplifying, the numerator
polynomial of‘ﬁc‘when equated to zero gives the characteristic equafion.
Thus we have |

7 & 5 4 3

.9 8 \ y ., 2
A f bOS + b1s. + bzs + b3s + b4s + b5s ‘ffbﬁs 4+ b75 |
+ bgs + bg =0 'A{1—8)
where ‘
Po = Rdg?vTET2l0n
by = RudelylOeaTeT, * ToalTe *+ T)]
by = Ridedy[Ign + Doa(Tg + T,) + KouTp T, + Koy (903,131

cLr’vshIon
2 -
- KgKpdyTolgn * HOORyToTE
b3 = RnlelvlPon * (T + Tedoal + Koy 19ydg(Ti0gs *+ Tgp)

. 2 ﬂ
+ KgKpdy(TpDpa+ Tga) + HOYR ATy + Tp) + JykKerrT1oakp

P4 = RudadvKon * KoLrdyda(Pon + Koaly) + KgKedy(Dgy + KoaTp)

2. L 2
F IRy + Oy LTyDgp + TgaKp + KiTyTgad + Kpy (37T,



5 7 Kerrdwghon ¥ K KTJVKOA * JVKCLI[KP(DOA KoaTy)

. 2
+ K (TiDga + Tga)d + KIKCLIHTT onky * Ker oM

bg = v Ker1[KoaKp + K (Dga * Kgp 1)] K KCLIH[(TanA + IgpK

+K0TTIOA]
by = Ko Kikon +LKo(TqBgn + Tga) + KylDpy + Koy T
bg = KiKgLMKoaky -+ KofPoq * KoaT 1)]
by = IKCLIHKOKOA o o O (-9)

Substituting the values of the system pérametefs 1ﬁto theée coefficients,

we have,
by = 1.98697
by = 12747.9
b, = 0.483289X10°"
b, = 0.192517x10"]

by = 0.273187x10'%

by = 0.619189x101°

bg = 0.44553x10'8

b, = 0.163408x10%°
bgi%0.131112x1021
by = 0.536217x10%"

The eigenvalues of the system, dr the roots of Eq. (1-8) are found

and are tabulated below:



-4.56811 + j4.68534
' vehicle dynamics

-4.56811 - j4.68534 |
~1563.11 : CMG torque motor Armature time constant
-39.8505 + j40.9207 : =

.Y CMG dynamics
-39.8505 - j40.9207 - :
-12.4647 + j748.038 o | o .

' ' ' CMG output axis torsion dynamics

~12.4647 - j748.038 o

| CMG curreht.1oop contro?1er
-3072.85 ‘ :

-3072.85 + j3554.86
33554 86 }
The contr1but10n of the sectors of the LST and the CMG dynam1cs to these
eigenvalues are 1nd1cated
It is essent1a] to 1nvestigate the importance and weight of each of
these e1genva1ues upon the dynamics of the entire system. Since some of
these modes have very short time constants and h1gh frequency oscxilations,
it 15 expected ‘that a d1g1ta1 computer s1mu]at10n of the entire exact
model will be time consuming_and\cost]y.-
We shall show that fqr'computer simulation and analytical pureoses
some of these fast and osciiTatory modes.of the system mey be neglected.
Figure 1-2 i1lustrates the root locus diagram of Eq. (1'8) when K0
and K1 are varjed proportional]y from their nominal va]ues which are Tisted
earlier. In F1gure 1-2 the variable parameter is 1nd1cated as K which s
the mu]t1p1ier pf the nominal Ky and K]‘ Table 1-1 gives the Tocat1pn
of the roots as a function of Kﬁ | | | )
It is interest1ng to note from the root 1ocus diagram that for the
nominal Ko and K1 both the LST vehicle dynamics and the CMG dynamics have

a re]at1ve damping ratio of approximately 0. 707 Furthermere, the



jw

-1247+j748,Kk=0. &
s-plane Ka100 K=100
-3073+j3555
Ke10, 0667”' jso?
K:Q.T, 0.2-j60
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Figure 1-2. A root locus diagram of Eq. {1-8) when Ko and Ky are varied proportionally.



Table

complete LST as

1-1. Eigenva]ues of the
Kg = KKO (nominal) and K]'= KK](nominal) vary.

Ko (nominal) = 5.75835X105

Ky (nominal) = 1.37102X103
K _ Roots - |
0.1| -0.379 * j1.837 | -1563.1 | -44.034 + j45.091 -12.470 + j748.04 | -3072.8 + j3554.8
0.5 -2.041 + j3.853 -1563.1 -42.374 i Jj43.335 -12.467 + j748.04 -3072.8 j3554.8
1.0 -4.568 t j4.685 -1563;] ~39.850 + j40.921 -12.465 + j748.04 -3072.8 + j3554.8
2.0 | -6.295 -19.522 | -1563.1 | -31.515 « j35.779 | -12.450 + §748.08 | -3072.8 33554.8
5.0 1-4-680 -64.314 | -1563.1 -9.943 =+ j47.136 -12.443 + j648.04 ~-3072.8 + j3554.8
9.0 | -4.481 -82.631 | -1563.1 | -0.925 =+ j5a.522 | -12.422 + j748.04 | -3072.8 + j3554.8 |
9.7 | -8.422 -84.921| -1563.1 | 0.206 = j60.068 | -12.418 + 1748.04 | -3072.8 + $3554.8
10 | -4.415 -86.866 | -1563.1 | 0.667 * j66.774 | -12.417 + §748.04 | -3072.8 + j3554.8
100 -156.13 | -1563.1 45.437 i. -11.94  + j748.03 --3072.8 + j3554.8

-4.220

j129.14




10

eigenvalues at--1563.1, -3072.8 + j3554.8, and -12.465 = j748.04 are not
sensitive to the change of the loop gain at all. o
Another way of investigating the significance of eéch of the
eigenvalues toward the dynamics of the entire system is to evaluate the
residue of the closed-loop transfer function that correspoﬁds to each of
th; eigenvalues.
From.Figure 1-1 the closed-loop transfer function of the LST system

without the CMG nonlinearity is written

Oy _ 666466565 GKr (1-10)
X AO
After simplification, Eq. {1-10) becomes
| voura Al 3. .2, |
8y KeKep (K{ags +ays™+a s 4agsta,) | o)
X A _

“where A is given by Eq. (1-8), and

= Toa Ty

= 7]
—
I

= DgakqTy * Toalky + KgTy)

3y = KoaTiKy + DoalKy + KgTy) + oKy

ay = KO'DOA + KOA(K1 + K0T1)

, 3 = Kofoa

Substitution of the system parameters into Eq. (1-11), and performing
partial faction expansion, the residues of Eg. (1-11)_a£'its bo1es are
tabulated in Table 1-2. It is interesting to note that-bn]y the residues
wh%ch torrespond to the CMG and the vehicle dynamics are of significance.
The contribution$ froﬁ the)eigenvalues at -1563.1, -3072.8 = Jj3554.8, and

'-12,465'1 J748.04 are very fnsignificant.
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‘Table 1-2. Residues of Eq. (1-11) at its poles

Roots
Vehicle dynamics -4.56811 * j4.68534
CMG torque motor
armature time constant -1563.11
CMG dynamics ~38.8505 + j40.9207
CMG output axis _
‘torsion dynamics - -12.4647 + j748.038
CMG current loop - :
controller , -3072.85 + 33554.86

Residues

14.3102 * j0.5256

0.002778

-14.2967 = j12.7188

-0.013248 + j0.0001275

© -0.001565 ¥ j0.002523
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Stil ahother;method of investigating the{effects of each of the'
systeﬁ components on the system dynamics is to_make the frequency—domain
piots for G(s) of Eq. (1-4). These plots are also usefuT for the
continuous-data describing function’study of the system.’ In Figure 1-3,
curve 1‘gives the.G(s) plot in decibels versus phase for fhe 9th-order

LST system. In the same figure, curve 2 gives_the G(s) plot when the -

‘output axis torsional dynamics of the CMG are neglected; that is, IOA'= 0,
Dop = 0s Koy = O | | B
- In this case, G(s) is simplified to
R s(1+T,8) (14T s )4K ., - (14T, 5) | |
where o o ' '
' _ 5 .8 1 (7 - 4
(Ridg + Ko pdgly * KBKTTZ)S + (KCLI'JG * KKy |
+ KCLIK T )s + KCLI(K + KITl)s + KCLIKI , {1-13)}

In'addition to neglecting the CMG‘tdrsioha] dynam1cs a further
s1mp]1f1cat1on of the LST system can be conducted by neg]ectTng the
- time constants T], 2. and TE’ as these are sma11 when compared with the
time constants of the vehicle and the CMG. Figure ]-4‘gjves the block
.diagram of the Gimbal rate contro] loop and the CMG with these simpiiffcations.
Using the block diagram reduction technique, the system in Figuré 174 is
reduced tolthé bTock diagram-df Figure 1-5. Since KCLIme is very large,
the transfer funct1on of the 1nner 1oop 1nv01v1ng KCLI and R is approximate1y
un1ty. Furthermore, since KB/KCLI is veny smal?. the back enf loop of
Figure 1-5 may also be neg]ected The final simplified gimbal rate control

The transfer function of the simplified CMG contro1 1pop is
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Figurg 1-3. Frequency-domain plots of the LST system.
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Figure 1-6. Final simplified gimbal rate control Toop and the CMG.
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VT T2 - 1
,JGS pS+K; : :

Substituting the system parameters into the last equation, we have

- 102.857(s+44.9074) | (1-15)
" (s¥5T. 4284348, 3) (s BT WETHT] | -

Now replacing the CMG -control Toop in Figure 1-1 bj the simplified
diagram of Figure 1-6, we have the block diagram of Figure 1-7 for the
simplified LST system without sampling. ' . |

The transfer function for Gfs) in Eq. (1-4) is simplified to
' | J.s8

G(s) =' ——ee

Iy Ko HI K T+ HK s+ KH

| (1-16)
i  Figure 1-8 shows the plot for the G(s) in Eq {1- ]5) It s

interesting to note that the three G(s) p]ots in F1gures I 3 and 1- 8

are very similar for frequencies below 1000 rad/sec. Th1s'proves

that the LST system may justifiably approximatedjby:thé simp1ified'§ystem

of Figure 1-7. | |
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Theh Tf can be generated by intebrating both sides of Ed. (2-1) with
respect to t. It is observed that TéF' is easi1y found hﬁ a function
of x. However, the simuiat1on ‘mode!l actually has TGF generated by a
function generator with TGF as the 1nput The s1mu1at1on'b1ock diagram
for the CMG fr1ct1on non]1near1ty is*shown in F1gure 2 1. - Notice that
this model has eG as 1nput and TGF as the outppt.

Referring to’FiQdﬁe T51;7Ehé“BT&&E“aiéﬁFﬁﬁdﬁ?*Figﬁre 2-1 may
replace the b]ocks'for the‘simp1ified non]inéqrity between‘éG and TGE‘

It has been demonstrated)experimen£a11y [3] that'fof the solid
rolling friction the re]at1on between TGF and T F may be apbroximated

by a square-law expression,

o T e e (2-2)
GF ~ de,  "''6F ~ 'GFO’ GF = 'GF0
~where ¥ is a positive constant.
Tgr = 0 Ter > Tepo N

However, for the CMG frict1on, the frictional torque is a1so ve10c1ty

dependent, as shown in Figure 2- 1 Therefore, Eq. (2—2) should be written

TéF = v(T

Ter 1" TGFSGN(BG) S T (2-5)
For simulation purpose, the block diagram of F1gure 2- 1 can be
easily programmgd,on the digital computer,_and the program can be used
for any fnput' | | ‘ | ‘ -
Our ObJectTVE is to investigate the behavior of the f“7' |
non]1near1ty under a sinusoidal excitat1on, SO that the descr1b1nq f

funct1on can be der1ved In the present s1tuation, however,

eF1 Tero! - R )

21
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 -Figure 2-1. A simulation block diagram of the CMG friction nonTlinearity.
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we shall show that.thémThput-butput relation of the ™
nonlinearity is different for sine and cosine inputs. It should be
noted that the describing function is a pseﬂdo-sinusoida]'steady-
state analysis so that either sinusoida]‘pr cosinusoidal inputs may f

be assumed. These are shown by the following derivations.

(1) Let 6y = A sinat | " (2-6)

| then 66 - %toswt ' - | | (2-.7)
For éG >0, Egs. (2-1){2-4) and (2-5) lead to

dTGF

e | 2
—at - YAsinat (Toe - Tepo)

(2-8)

kr<ut < (2k + 1)m, k= 0,71, 2, ...

Solution of the nonlinear differential equation of Eq. (2-8) yields

1 A ' '
- F— = - cosut + C (2-9)
Ter~Tero w -

‘The constant C is found by specifying the initial value of TGF at t = 0:

t=0 T T >0 (2-10)

6F = "TgFi 6Fi
Thus,
| . ] |
=X o (2-17)
@ Teri*Tgro S

Substitution of the last equation ihto Eq. (2-9) and simp]ifying, we have
~the solution |

T
T

R
R+]
+ g{T—COSmt)

1-coswt)¥

GF_ _
GFO

~|raer

(2-12)

-

]

R+
which is valid for 65 > 0, or 2km < ut < (2k + I, k = 0, 1, 2, ...



where
m
and ,
R_TGH
° T
GFO -

For éG 5;0,_Eqs; (2-1), (2-4), and (2-5) lead to

dT '
GF _ : )
—dt—— = YA s1nwt(-TG

2
F = Tero’

(2k+1)w < wt < (2k¥2)m, k=0,1, 2, ....

The solution of Eq. (2-15) is

1 YA
e B W cosut + C
“Tar Tero w

The boundary condition is TGF =‘—TGF5 at wt = 2m-and its integral

multiples. - Thus,

A ]
C: L.{._.._._,.._....._._
| w - Teei~Taro

24 -

(2-13)

(2-14)

(2-15) -

(2-16)

(2-17)

Substitution of C into Eq. (2-16) and simplifying, the final solution is

TGF' - §§T - %-(1~coswt)
T

b 1
GFO ‘E—(?fcoswt)+§:T

(2-18)

which is valid for 8; <0, or (2k+1)m < ut < (2k+2)m, k= 0, 1,2, tor\

and 6 is given by Eq. (2-6).

‘TGFi‘ which represents the value of TGF

can be determrngd by matching the values ?f Ter’Taro

k=0, 1,2, ..., for the two ranges of 6.. Setting wt =7 and

equating Eq. (2-12) to Eq. (2-18), we have

at wt = 2km, k=20, 1, 2, ...

at wt = (2k+1)m,
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R R

PR ﬁ:T}f b (2-19)
BT VP b+ R
which is simplified to
R+ 21=0 | o (2-20)

Solving for R gives . - o x .
_ -I : 3 b + ‘] 7 - . ‘ _ :
Re-5* N7 u - (e2n)

Sin;e TGFi f-TGFO‘ and TGFi >0, R<T1; the pjus sigh must be chosen in -
Eq. (2-21).

2 Taps - ‘
R = _‘%-+ \’Q.%l.: _GF1 _ _ ' (2-22)
' pe T | . |

GFO .
The same result for R can be obtained by use of the boundary condition at

wt = 7 which iS.TGF = TGFi.

The conéequence of defining éG as a sine~fun§tion; Eq. (2-6), is that

TGfi is dependent on , since b depends on Q. _Figure‘Z-Z'giVés’the
TGF/TGFO versu5-éG/A relations for various values of A/m; Notice that
the maximum value of TGF/TGFO is different for different ratios of A/w.
Figure 273 illustrates the relations between TGF/TGFO and.eG@/A with

0g given by Eq. (2—7). Note that the B axis is normalized by w/A, so
that as w varies not only the bounds of TGF/TGFO will vary but also the
boundsiof eG. These curves are also plotted for various va]ues of Alw
indicated. It would seem that Qy defining éG as -a sine function as in
Eq- (2-6), there is an advantage of using thé noﬁ]inear charactefiétics
of Fig. 2-2 for analytical purposes. In princib1e, either~eG or éé,

but not both, may be used as the ‘input to the non1inearity; provided that

the corresponding nonlinear characteristic is used.



95 =-% cos (wt)

8, = Asin(wl)
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Figure 2-2. Normalized frictional tofque versus EG/A for CMG nonlinearity, with sine function input.
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- This 1is because 8¢ and éG are directly related. In other WOﬁds, the

TGF/TGFO Versus eG characteristics contain the same infqrmation as

tho;e of TGF/TGFO'versus SG.
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(2)  Let B, = A cos ut S (2-23)

Then éG = ~Awsin wt . o | - (2-24)

For éG < 0, Egs. (2-1), (2-4) and (2-5) lead to

EIEE = - yAwsinwt (-T.. - T )2 (2-25)
dt . GF ~ ' GFO
2kt < wt < (2k+)m, k=10,1, 2, ...
The solution of Eq. (2-25) is
-1 ‘ | | : '
== = YA cos wt + C | | (2-26)
Ter Tero |
At t = 0, the bgundahy cgndition on TGF is TGFj= TGFi’ where TGEi > 0.
EqUation (2-26) gives
C = - 'YA - ———— . C - (2-27)
Ter * Taro o

Substituting Eq. (2-27) into Eq. (2-26) and simplifying, the complete

solution is

TeF EET'" g{T-tosmt) (2-28)
Torn @ 1 o AETE
GFO ,7{1_Coswt)+§:T
which is valid for 2km < wt < (2k+1)7 , k = 0, 1, 2, ..., or 8; < 0, and
a = 2¥ATge, B | L ' (2-29)
For GG > Q,
dTop | |
GF. _ . 2 , '
'Tt'—-"— - yAmsmwt(TGF - TGFO) , V' . (2-30)

(2k+1)m < wt < (2k+2)m, k = 0, 1, 2, ...
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The solution of Eq. (2-30) is

-1

T T = YAcoswt + C - L - (2'31)
6F ~'gr0 - o o
The boundary condition is Tee = Toro at ot = 2m. Thus, Eq. (2-31) gives
C= YA - =—F— . | (2-32)
| TeFi~TgFo o .

énd the complete solution is

| R
RN

R-
Tero ¥

a

+ & (1-cosut) . o

RT 2 ] | - S (2-33)

1-coswt) + T

which is valid for 6, > 0, or (2k+1)m < wt < (2k+2)m, k = 0, 1, 2, ... .
| Matching Eqs. (2-28) with Eq. f2-33) at wt = 7, we have

“+&p-1=0 | (2-34)

whose solution of R is

=L . . GFi | . _
Rj-a+ 5 . . (2-35)

The significan;e of this result is that TGFi/TGFO,iS not a function of w,
since a depends only on y,‘A, and TGFO‘ It fs intereéting fd note that
Eq. (2~22) and'Eq.'(2-35) have the same form, except that in the former
equat1on b is a function of w, ‘whereas in the latter equation @ is not.
Figure 2- 4 shows the TGF/TGIFO versus @ /A character1st1cs for
several values of A The maximum value that TGF reaches for all values
of w is the same.- Figuré 2-5 giyes fhe TGF/TGFO versus éG/A_
characteristics with the 6. axis normalized by Aw. From these curves,
1t would seem that there 15 a c]ear cut advantage in us1ng the T F/TGFO ‘
VEersus BG/A character1st1cs with GG = Acoswt as the input. Referring

to Figure 1-1, for describing function analysis, one différence between
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the use of 6, and éG as the input to the nonlinearity is the linear

transfer function G(s) which the nonlinear element sees.
Table 2-1 gives a comparison of the expressions of TGF/TGFb

for the two types of inputs. It s interesting to note that if A/w

in b is replaced by A, the expressions for T F/TGFO di ffer only by a

sign for the two inputs. A similar effect 1s achieved by rep]ac1ng
-A/w by A in Eq. (2-7) for 6, and A by -Aw in Eq. (2-6) for 6y

With the above changes, the forque expreséions for the two types of
inputs become identical. This means that thE.CUTVES in Figs. 2-2 and
2-5 and those of Figs. 2-3 and 2~4 are identical. for the correspond1ng _

va]ues of A/w and A, respectively.



Table 2-1

Da
n

g = Asinat - | 65 = A cps@t
| 6. = - A cosut | 8. = - A sinut
G w G .
TeF
Tk
2km < wt = %{]-Cosmt)‘- EET: 1 - %{] ~cosut) + RET
> ’ ]
;12k+])ﬁ ﬁé— 2(1 cosmt) Tt E{]—FOSwt)
(ék+])'IT < wt R E(l-co'suﬂ:) | Ry + 203 ¢;;05wt)
. = TR gtmcosets R-1 "2 Ul
<(2k+2)7 Fl-cosat) + 2= | %(1-coswt).+ ﬁf—?
2YAT ...
| _ . GFQ i
b 5 a = ZYATGFO
- -1 b* + o -1, JaFE T
R"b+"—5'!"_ R--a+._'—az——




A More General CMG Frictional Nonlinearity Model
‘A more general expression which is valid for any input can be
derived for the CMG frictional torque characte}istic; We start with

the square-Taw expression in Eq. (2-4),

P - Y e
where
Tar1 = Tero@(og) - (2-37)

Equation (2-36) can be 1ntegrated with respect to BG d1rect1y

The resu1ts are:

(806 )Y (Tors=Toro) Targ Tari

6. > 0 (2-38)
‘Be Gi)‘f(TaFi “Tero) = 1 G~
:(ee Oai )Y(TeFi”Tero)TeFo‘Tari g g0 (2-39)
(ea GJY(TGH Tegrg) =T |

where ‘
eGir= initial va]ue qf BG

TGFi = initial vaiue of TGF

'Thése expresSions'fdr the frfctiona] torque are valid for any arbitrary
1nput BG and initial conditions at the beginning of the process.

When eG changes s1gn dur1ng the process, the proper express1on should
be used, and the 1n1t1a1 conditions shou1d be appropr1ate1y'matched at
the switching point. It is simple to shbw that when Og = = %c05wt,

eéi = ; %; Egs. (2-38) and (2-39) revert to Eqs,‘f2~12) and (2-18),
.respectively. Similarly, if bg = Acoswt and ®gi = A,'Eqs. (2-38)

and (2-39) become identical to Egs. (2-28)-and (2-33),. respectively.
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3. A Continuous Describing Function for‘thg-ﬁimba1-Frict10n Nonlinearity

In chapter 2 the nonlinear characteFTstic of the gimbal frictioﬁ
is analyzed with sinusoidal inputs. ItléeEms that there is an advantage
of us1ng a cosine wave as the 1nput since then, the fract1ona] torque
gsaturat1on level is not a function of frequency For ana1yt1ca1
pUrposes, the TGF/TGFO versus BG/A curv&s‘of Figure 2-4 seem to be the
most convenient to use. | | :

In the last bimonth]y raport, No: 1-73, the gimbal frictional
nonlinearity ié approximated by a four-sided.po1ygon.. In this section
a better apbroximatibn is made by the sik¥sided po1ygbn shﬁwn in
Figures 3-1 ahd'3-2. It is apparent from Figure 2-4 that when fhe
jnput amplitude changes the slope k of the n0nlineafity-a1$b changes.
The continuous~qata describing function for the nonlinearity in
Figure 3-1 and 3-2 is now derived. &

Tﬁe input to the non]inearity‘is a cosine waveform shown_in Figqre :
3-1 and given as | | |

| gg = Ecosut | - | (3- 1)

The output waveform of the non]1near1ty as a function of .wt s shown
in Figure 3-1. The four parts of th1s_waveform are described by'the

following set Of'equatibns.

f(eG) ='kEcos¢ ~ kE 0 <y <
= -M A ai b
= kEcos¢ + kE o 42
=M ap < ¢ < 2m N {3-2)
where | | | |
o= uwt 5 (3-3)
ay = cos™ (1-M/KE) o (3

ag = o *m S o (3-5)



M o - C Tee(t)

> '0) ' 4 8,(1)

~ Figure 3-1. Linearized input-output relation of CMG nonlinearity.

SE
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The Fourier series for the waveform of the output of the nonlinearity
is given by |
f(t) = Agl2 + A;cosut + B]sdnnm
¥RpCos2ut + BysinZut + ... S (3-6)

where the coefficients are given by

I
=
I

2T ' ' ,
- 1n fo-_ f(t)cos (Nut ) dut | (3-7)

j=x]
il

g = 1/m fzﬂ £(t)sin(Not)dut E - (3-8)

N=20,1,2, ...

Since there is no bias on the output signal from the nonlinearity, A, = 0.

0
If the higher frequency harmonics, N = 2, 3, ..., are neglected, the

output waveform is given .by

f(t) = fA? + Bf cos (¢- tanf]B1/A1) | _ (3-9)

The phasor notation of (t) is

F(jw) =4 A§‘+ B% 'exp[-jtanfTB1/A]] I B (3-10)

The describing function of the nonlinearity is defined as

| N(E) = F(jw))E(jw) = /A? fB? /E-exp[—jtan']B]/Al] .-(3?11)'
= AJ/E - By /E | B |
By using Eqs. (3—2).fhroﬁgh-ké¥5)m¥hé cbéffféiéﬁté {n'EQSfffé:f)'_";
‘and (3-8) are solved for N = 1 to yield
| Ay = kEcos™'(1 - MKE)/m | o
- [2MkE - W (M-KE)/mKE . '_' ,- . (3-12)

By = -4M/m + Mo/ mkE S (3-13)



Describing Function Plots

Nhen evaTuat1ng the descr1b1ng function it is convenient to def1ne a

norma11zed input amp11tude H as
= 2KE/N - (3-14)

Using equation (3-14) in Egs. (3-12) and {(3-13) and dividing both -s1des

of these equations by E gives

A/E kcos™ (1 -Z/H)/n +4k(1 - H/2) / /H T (3-15)

~8k/Hm +4k/HPT , - h (3-16)

n

B]/E
- The above equations show that the deﬁcribfng function will depend '
only on H and k. | o
‘ Figuré 3-3 shows the magnitude versus phase curves for -1./N(E}
for different values of the slope of the nonlinearity, k. In these
curves the magnitﬁde of the normalized input.signaI to the nonlinearity,
H, 1s'varied.from 1.0 to 100. When the magnitﬁde of‘H becomes Tess
than 1, the gimbal torque characteristics decrease as shown in Figure
3-2. For these Amplitudes of H, M is set to M = 2kE and the magnitude
and phase of 1./N(E) remains constant as H is varied. This can be _
seen by §ubstithting M = 2kE into equations (3-12) and (3-13).
AJJE = K ' T (3-17)
-4k/m | ‘ . (3-18)

]

B]/E
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"4, Computer Simu]ation of the Simplified LST System

Since the describing funct1on anaTys1s of the CMG non11near1ty has
been g1ven in the last chapter, a computer 51mu1at10n of the LST system
is necessary to corroborate the analytical results. - It should be noted
that the descr1b1ng function analysis 15 carried out only for the
stra1ght Tine approx1mat1on of the non11near1ty as iTlustrated in |
Figure 3-1. " The simulation mode] of the non1jnear1ty also has the same
characteristics. Future Qorkrwili inc1ode'tﬁe derivation of the
describing function of the exact nonlihearity asthodelled in Figure 2-1,
as well as a computer simulation with the exact model.

The simplified LST system is repreSeoted by ;he b1ock-diagram of
Figure 1-7. The linear traosfer function which the non11oear element
N sees is given by Eq. (]—16). ‘The frequency-domain plot of G(s) 1is
plotted in Figure 1-8 in db versus phase coordinates. The poftion of G{s} for
w = 2.5 tolﬁ is given .-1n Figure 3-3. For k'¥ 50,000 ft-1b/rad, the

G(s) curve 1ntersects the -I/N(E) curve at a frequency of 5.1 rad/sec

and H = 9, - The saturat1on 1eveT of the gimbal frictional torque is set
at M = 0. 078 ft- ]b Therefore, the corresponQ1ng amp]1tude of oscillation
of the gimbal pos1t1on,E, is |

= MH/2Kk = 7.2 x 107 rad.

| For the computer simulation, the input to the LST system, X » 15
set to zero, a?ong with all the initial states, except for the veh1cle =
| position 0, The initial value of 6y is'set at 5 x 10 - rad, which is
chosen so that the input signal to the nonlinearity, 6g> would be large
-enough to cause the torque to saturate, while at the same time tﬁe

limiting value of the input signal given in [1] is not‘ekceeded.

—mal
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To fully understand the results of the computer simulation of the
LST system it is usefﬁT to represent the computef_modeTing of the
noniinearity by the f]ow diagram of Figure 4-1. Due to the inherent
memory of the'nonlinéarity it is necessary to'initiaIIy define the _
position of the last switching point and the last va]ue of the velocity
before enter1ng the flow diagram.

The following quantities are plotted from the simulation runs:

Las]
"

vehicle position (rad)
w, = vehicle ve]ocity‘(rad/sec)
0g = Gimbal pos1t1on (rad)-
wg = Gimbal ve10c1ty (rad/sec) |
Tar = Torque output of the nonlinearity (ft-1b) :
_Error = Error input command (rad/seb) to the:CﬁG _‘
= X~ Koy - Ky, |
Figures 4~2‘thrOUQh 4-7 show the plots of the above liéted quantities.
It may be noted frdm the plot of Ter ianigure 4-5 thét the system has
a sustained oscillation. ‘This oscillation is not seen on the other plots
because of the large initial transients.. Figures 4-8 through 4-13 show
the continuation of Figures 4-2 through 4-7 with proper scales. These'~
figures show that the amplitude and frequency of the sustained oscillation
are quite close to the values predicted in F1gure 3-3.
The simulation results show that the LST system is stable for smaller

N\

values of k, such as k = 10,000,
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Figure 4.1. Computer flow diagram of CMG nonlinearity.
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5. A Describing Function of the CMG Non¥inearity

Using the Analytical Torque Equation -

A describing function of the CMG frictional nonlinearity was

- derived earlier dsing the straight-1ine approximated input-output

relation between the frictional torque T,. and the CMG angular dis-

| GF
placement BG.
However, it is possible to derive a describing function for the
CMG frictional torgue using the analytical relation between TGF.and eé.
It hés been estab]ished that the frictiona]rnon1inearity of the CMG

can be described by thE‘square—Taw relation.

aToe ‘ \
| 2
dégf = v(Tgr1 - Tgro) . (5-1)
~ where 7 \ _
Tarr = Tgr S&N(og) B - )

TGFO = saturation level of TGF

| Y = positive constant

Carrying out the integration on both sides of Eq. (5-1) yields

| L | |
6+ Cp = - , 6,50 | (5-3)
G 1 + : 6=
o g - Tero) |

-1
Y{Ter * Tero)

g * Gy 6 20 _ (5-4)

where 01 and C, are constants of integration, and
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Ter = Ter 20 (5-5)
T = Ter 9y < 0 (5-6)
Then, C; and Cz'are given by
_ ] - - N
Cy = -Bg - = bs > 0 (5-7)
6Fi = TgFo) | |
| o _
Cm by -1 Bgz0 (5.
Y(Tgps * Tgro)

wheré eGi and TGF denote the 1n1t1a1 va]ues of bg and TGF’ respectively.
For a sinusoidal input, b is represented by

eG = A cos wt B - (5-9)

It is important to note that for the input of Eq. (5- 9) = -A when |

b > 0, and eGi = A whgn <] Q.

G < | |
Solving for TEF and TEF from Eqs. (5-§) and {5-4), resbective?y, we

have
T-+ al T > 0 (5-10)
. v{A cos wt +C;} * GFO G- _ |
Tep = ] T é.<o (5-11)
" Y{Acos wt + ) = 'GFO G —
with
LR P— (5-12)
- ¥Ugrs = Tgeo)
C, = -A - 1 o .
2 - (5-13)

(Teri * Tgro)

where



2

- ' 1 a +1 R :
GFi - TGFO(' aNT - (518

—t
1

GFO (5-16)

a = 2yAT
With the describing function method, the frictional torque T, may be
approximated by the fundamental component of the Fourier series. The dc
component is zera, since the input-output relation is symmetrical
about the zero-torque axis.
Thus,
'TGF = A1 sin wt + B.I cos wt

2 2

Ay + B cos - (wt - ¢} - {(5-17)
‘ ah
"¢ = tan BT (5-18)
1
1 (2" 1
| 5]= §-J0 GF sin wt dut = %.IO oF sinwt‘dmt‘
1 2T
+ %-J“ Tep sinut dut (5-19)
_ B] == JO TGF coswt duwt = f: TGF coswt dut
1 27 + ‘
-+ F'J Top coswt dut | (56-20)

il

Substitution of Egs. (5-10) and (5-11) into Eq. (5-19) gives

+ 1. fa"+1 o -
Teri .~ TsFO('a +W/_;T) | (5-14)

5
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o

A =L -1 A 1 .
M !z v (Acoswt + C2)51nu¢ dwt - fo TGFO sinuwt dwt
L ' ] je“ . |
- i ?fﬂ YTR Cosat ¥ c1)ST"wt dut + 3 | Taro Stnot dut (5-21)
a 2T
= " 2lero
A = oy 40 (A cosut + C,) )T
2 2T
1 GFO )
+ Ay £n (A coswt + C ) [ - (5-22)
Thus |
| ‘ C,-A [ Cq+A AT
= Lt {2 1 5F0 )
a “AY{zn (52+ﬁ9 " (C]-A)} " (5-23)

In arriving at the last expression it is noted that

L, <-A

Cq

> AA

and C-I = -C2 over their respective ranges of 8

& EQuation (5-23) is

- simplified further to

A ;1‘; 4TGF0 . y (CZ A)(C +A)
1 ™ TTAY (Cz_-)w

Now substitution

: ' id
RSN i
BT e Ytﬂ coswt + CZJCOSwt dut - m JO TGFO coswt dut

TC+A -
4 2, 14
T TGF0 Ay tc] A} (5-24)

of Egs. (5-10) and (5-11) into Eq.

(5-20) yields

T

2 ‘._1

' 2T
T i f
Coswt dwt + =4 T coswt dut (5-25)
yIlcosmt + C‘]' mJ. GFO ,




Evaluating each of the integrals in the last equation, we have

2m

T . '
fu TGFO coswt dwt = fﬂ TGFO‘coswt dut = 0 | | (5-26)
Since C, < -A, C, is always negative, and Cg > A2, the first integral of
By becomes ' '
‘ | “
=1 0 ()"
L=q I Acoswt+c2 coswt dut = o Rly
C, m
2 duwt _
" A [0 Acoswt+C, (5-27)
or ‘

-1 (Czi_)tan(wt/Z) ]W
0

- C
-1, 2| 2 tan
h=-35* wa [ch;A’zﬂ Vi

1]

v
where the fact that C2 is negative has been used. Also, tan /2 is

taken to be 4« since wt/2 expands from 0 to /2.

Similarly, the third integral of B, in Eq. (5425) is written

—
|

1T |
27 7 ﬁ V(Acosu+Cy) Cosut dut
¢ o (Cy-A)tan(et/2) Y2r
12 .19 .

"I' e | e,
YA YA - _ -
o A ¥ ?rAz

(]

= -1 +___.EI..___._. 7(5 29)
N A— -
YATG-AT

In arriving at the last equation, we have recognized.thét CT'> A and

have used that tan Tj2 = e, since in this case wt/2 eXpands from /2 to .

Thus ,

o1 ' o 5-28
YA AGCE—AZ ‘ . : ( ) |

53
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By=h vl =-%- i
R Y
¢

- % S — (5-30)
Ves-a?
The desciribing function in complex form is written as
N(A) = ]A 1 , (5-31)

where'A1 and B, are given by Eqs. (5-24) and (5-30), resﬁective1y A
d191ta] computer program for the computation of N(A) and -I/N(A) is listed
in Table 5-1. The constant A is represented by E in th1s program. The
parameters of the nonlinearity are:

Tepg = 0.1 ft-1b

5

GFO
y=1.38x10

Figure 5-1 shows the magnitude (db) versus phase (degrées) plots of
SI/NGR) for v = 1.38 x 10%, 0,69 x 165, 1.38 x 10°, 0.69 x 105, and

1.38 x 106, as the magnitudé of A varies. Note that as A becomes

1érge, the magnitude of -1/N(A) approaches infinity énd the phase _
approaches -270 degrees. As A decreases, the magnitude of -1/N(A) decreases
and the phase approaches -180 degrees. In. thg‘11m1t as A+0, -T/N(A)

2.
goes to ']/YTGFO

j

Asymptotic Behavior of -1/N(A) for Very Small Values of A

Figure 5-1 shows that as A approaches zero, the magnitude of
_1/N(A) in db approaches 20 1081001/¥T ey’ ] and the phase is ~180
degrees The asymptotic behavior of -1/N(A) for very small values

of A is derived here analytically.
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Table 5-7

LET CONTINQUS HESLPIBINE FUHITIUH - E#HFT th HDHLIHERPITf
COMPLEY BY saMelb ' -
RERALe& PfEBDsPI:RﬁDsTUvEHHHﬁ ESTHPT EsﬂﬁschEFIsThFH:TEFP-J1~Ld

11} PEHL*H HL

PI=3,14159 o L ,;jvaﬁw{
FRAD=120.-PI - . AR
TO=.1

0 ==10,

i GRMMA=3ei . 223ES
1 EXTRART=1 .E~13
) HF=g

3 HI=15

Fels=1.

0 PC2r=5,

WRITECE 100 ) Sk
WRITEC6s1017 | R
00 1 J=1sND : o

0 DO 1 I=1aNP

E=ESTARTOPCI e 10,00 )-132"

AF=Z . *GAMMASESTO D !

Re=(—1. HH)+DSQRT (ﬂﬁoaﬁ+1 ;f(ﬂﬂtﬂﬁ))

TGFI=ReTD

TEFEFN=TRFI

TEFP=-TGFI

Cl=E-1.-CSAMMA®{TGFP~-TOY 2

Ce==-E~1 .- (GAMMA®( TGFN+TO) ) ‘ : I

Rlis(~4, ¢TU/PI>+<1 ftPI#bHHHH‘E??‘BLUﬁ(((L1+E1‘fc E)J SO 1~EdeX
CC2+EX 2 )
RE=IMOGCCCCI+E e 2= E)Aff(Li E}OfLE+E>}J
Al=C(-4,.¢TOAPIX+(AZ/CPISGRAMMASES) .

Bi=(-1 /fCHHMHOE>>0f¢ +CE!DSQRT<CE¢CE-EOE> FIMD“QPTfIIOII EeE
Al=R1-E

B1=E1-E
GH=DCHMPLXCBY s—~R1 2
Fv=—-1. ISH ' ’
Bl1=REAL CGY
L2=RIMAG(EV)
GMAG=CRBE(GV ) ok
PDB=20.¢RLOG10CGMAGS | .
LGFHASE= RHDORTRHE(SE;GI) B v

IF(GPHASE .GE . D.JbPHHSE=EPHﬂSE—¢60.
wPITE(6;102>EyTGFIrEPHﬂSEnGDBstﬂG

1 CONTINUE o

100 FORMRYC” LDHTINBUS DESCRIBJHE FUHCTIBH FOR CHMG NONLINERRI.

101 Fupnﬂrcx,sx, SEC 411K TEFI’slBHp Pﬁassjsmux,’ns Vs MABNITU
1062 FDPMHT(1P5E14 5> &

ITar
END
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Dividing both sides of Eq. (5-24) by A and expanding the loga-

rithmic term into a power series, we have

(5-32)

Taking the Yimit on both sides of Eq. (6-32) as A»0, and using the

fact that

. 1
Limec, = ——
o - YTgro

we have

nv C A

A 2
2&3{E1J= Lim |- 4 —
: 1

A0 A GFo

N v

'YTF

= o | & G
2im —T i

T, A,

3
-1

{(5-33)

3.
A

C

5
1

4
o L mAGF0 * iy

Substituting Eq. (5-33) into the last equation we have



A 2
, 1} 4A; 2 2 4 5 _ -
ﬁ,—(;T [A_] [——l GFO + Ay TGFO + . .]I =0 (5-34)

Dividing both sides of Eq. {5-30) by A and taking the limit as A

approaches zero, we have

i
A

£im
A0

A0 YAZ( Z 2
1

- (5-35)
P YA gh (A/c:1 |

Expanding [1 - (A/C ) 1T ~172 into a power series, and us1ng on?y the

first two terms, Eq. (5 35) becomes

B | -
. 1)_ .2 11 (A )
£im {—%1= Lim 5|7
0 b A g v ['2 G
MO Y3 , _ | .
Thus, - , ,
&im 1/N(A) = Lim 1 1 - (5-37)

. B A
A0 e ' YT
| - d A GFO

As shown in Fig. 5 1, the ga1n phase p]ot of -I/N(A) as A approaches

zero is a point which 11es on the -180 deg 11ne w1th a magn1tude of

20 10g[1/¥Tgpo”1-
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Asymptotic Behavior of —]/N(A)rFor Very Large Values of A

For very Iérge values of A, the value of Cl becomes

Lim € = m{A>+ Tz ] - (5-38)
Ao rel Y'GFO |
" Then
A 3 |
s 4 2 1 A, A ~.
Lim — = Lim T =t + L
Borcs A Am{ TA 'GFO T Ty (C]A c]3 ETE ’ﬁ
= Lim [- LI, | = -0
o "9 TeFoj T - (5-39)

m g =0 | (5-40)
_ Thus,l 7
&m [ VN = -3/0 =el-270 o (5-a)

As shown in Figure 5-1, the gain-phase plots of -1/N(A) approach

| -270° as A + = for all values of v and TGFO‘
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T 6. Computer Simulation of the Simplified LST System with the

Analytical Torque Expressions

A computer simulation of the LST system is preseﬁfed here to
corroborate the results of the describing function éna]ysis of the
last chapter. Since the describing function analysés has been carried
out with the analytical torque expressions for Eﬁe CMG frictional
nonlinearity, the simu]atidn model of the non]iﬁéarity also has the
same characteristics This model of the non]1near1ty 1s implemented by
‘using the expressions for TGF in Egs. (2-38) and (2- 39) w1th initial

conditions for-eG and TGF being redefined each time a SIgn change in

§ occurs.
6 | ‘ E
The simp]ified LST system is represented by the block diagram of

Figure 1-7. The linear transfer function which the non11near e]euent NL

sees is given by

J 52

= ' v
6(s) = A 3,07
Tg2ys 40 ks 4 Ky H SHHK

0

- Two sets of numerical values are considered as follows:

System 1 System 2
3, 108 108
Jg 2.1 - 3.7
| 216. 280.
Ky 9700. 10000
H 600 200
Ky 137102 3000

Ky 5758. 35 20000
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The frequency-domain p1ot§ of G(s) for both systems are given
in Figure 6-1 in db versus phase coordinates. Figure 6-1 also
‘contains the -1/N curves: of Figure‘5~}:for v ='1.38 x 105,
1.38 x 10° and 1.38 x 107, B

With vy = 1.38 xVIO’, the -I/Nlcurve intersects the G(s) curves.
of the two systehs at two points each. Among these tHe stable points
for sustafﬁed'oscillétions are the ones on the left at the higher
frequencies. - The approximate magnitudes andlfrequencies of the
oscillations are 6 x 10°° rad and 4.4 rad/séc; respettiyely,'for
system 1, and 2 )<"10"5 rad and 5.6 rad/sec, respectively, for system
2. The curves 1n_Figure 6.1 also show that for Y‘consfderabiy smaller
than 1.38 x 107,7both sysﬁems wij} exhibit a stable reﬁpOnsé, although
for certain values of y system 2 will show;sustained oscilTations
while system 1 jé stable. |

For the computer simulation, the input to the LST system, y,
is set to zero, along with all the initial states, except for the
vehicle position ev. The initiai value of‘eV is set at 5 x IOfs
rad, which is chosen so that the input signal to the n6n1ihearity,
8> would be large enough to_cause the torqué tq'satufate, th]e :
at the same time the 1imiting value of the inpht signal is not
exceeded. - “_ |

The_fo]]owing quaﬁtities are plotted from the simulation runs:

By = vehicle position (rad) |

Wy
8g = Gimbal position {rad)

vehicle velocity (rad/sec)
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wg = Gimbal velocity (rad/sec)

Tep = Torque output of the nonlinearity (ft-]b)

Error = Error fnput commandi(rad/sec) to the CMG
= X - Kgby = Koy

Figures 6-2 and 6-3 show the plots of the-above Tisted quantities

-for system 1.wi£h y-= 1,38 x 107.( It may be noted from the plot of-TGF

in Figure 6-3 that fhe system:has a sUstainédﬁosci]1atioh. This
oscillation is not seen én the other plots because of the large initial
transiénts. Figure 6-4 thrbugh 6-5 show the contfnﬁation of Figures 6-2
and 6-3 with proper scales. Figures 6-6 énd 6-7 show the response plots
for system 2 with v = 1.38 x 107, and Figures,G—S and 6-9 show the
cpntinuat;on of these plots with proper sca1es.w‘The frequencies and
mégnitudes of‘bsEillations obtained with the two systéms are quite

close to the prgdicted va1ue;. The small discrep&ncy.is attributed to
| the d{scretization of the non]iﬁearity impiementation:on the digital
computer. o |

Figures 6-10 and 6-11 show fhe reSponée plots for sygtem 1 with

vy=0.69 x 107 and_fheir continuations are shown in Figures 6-12 and
6-13, respectively.‘ Figures 6-14_and 6-15 show the response plots
' for‘sysfem'l with vy = 1.38 x 10° . As predictéd, the‘Systémlis stdee

- for both of the Tower vy values.

A
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v = 1.38 x107

System 1

T

Figure 6-4_’
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7. Transfer Functions of the Sampled-Data LST System

Since the actual LST system has-samplefand-ho1d between the vehicle
controiier and the CMG controller, the system should be modelled as a |

sampied-data control system. Figure 7-1 shows the block diagram of the

.simplified LST syétem ﬁith sampled data. Since it is nECessary to

isolate the CMG nonlinearity from the Tinear dynémics for analytical

purposes, a sample-and-hold is inserted in front of the nonlinearity

- as an approximation.

Referring to Figure 7-1, the following equations are written

using e*,-eG* and eV* as outputs.

6,6¢6, G, G1G,6.6 '
e = (Guy)® ¥ ho]ﬁ]e* ho12357] e (7o) H
| G. G G, G.6.6.1* - .
- ho'6 ho 293%™ ‘
6" = -\ [ sBg ] %" [ sdy .] il (7-2)
G, G.G.G.G 6. 6.6
_| "Tho"273%6"7 ho 67 :
ev*‘[‘- By “‘] *[“Tﬁo'—' )eﬂ*. (7-3)

where the symbol * denotes the z-transform operation, and N* represents

' the discrete describing function of the CMG frittiona] nonlinéérit&;

B =1+ 6366 ' ‘ | (7-4)

Equations (7-1) through (7-3) are portrayed by the:sampled'signaI flow

'graph of Figure 7-2. Applying Mason's gain formula to this flow graph

yields the determinant of the graph as
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Figure 7-1. A block diagram of the simplified LST control systém with sampled data
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=1+ N* [Ghoﬁﬁ]* ) [GhoGGG7GT] [Ghoezﬁass]*
. -S4y _AO_ : SAQ g

N [ hoGIG2G366G7}* [Ghoﬁﬁ] B [GhoGIGZG3GGGY]* (7:5)
A
- 0 SO AO o B

The last equation is put into the form of (wath N(z) = N*)

1+ N(z)G(z) = S (7-6)
where (2)-h,{2)Ay(2) (21 (2) )
A (z)-A,(z)A(z)}+A, (Z2)A, (2
6(z) = ———* 1+A4(z) — (7-7)
. ‘ G ‘ .
: -1 b
A = (1= 2 . (7-8)
| '[(Z) ( z )3{ Sonl |
-1 'GGGJ,G]‘ - SRR
Ay(z) = (1-27) 3|20 . - (7-9)
0y
(6,66, s - |
Ay(z) = =)y 6223 : N (7-10)
{ %% | -
: (5.6
Ay(z) = (12" )3{-‘—3-1-5—1} (7-11)

Substitution ¢f the system transfer functions into the above expressions

yields

2
357K sHK
by - —55;;}I51~JL (7-12)
g
1 ) |
A 1-
e - H(K.#Ks) o
Ay(z) = (1-z )[ . 0 215- : A] o (7-14)



Aq(z) = ( 1)} — KI - : | (7-15)'
-3 s (JGs +Kps+K Yoo

2

"

KiH(K*K;s)

- -1 : .
A,(z) = (1-z )a ‘ ‘
4 | | $900.554K ¢

(7-16}

The following system parameters are used for System 1:

H=600 ft-Tb-sec
-

Jg = 2.1 ft-lb-sec

K, - 5.75835 x 10°

Ky = 1.37102 x 10%

K, = 216 ft-1b/rad/sec
Ky = 9700 ft-1b/rad

J, = ]05. ft-—1b-sec2

Taking the z- transforms of the functions 1ns1de the brackets in

(7-13) through (7-16), we have the fol]owing resu]ts

A (z) * A14 ‘ ol gla'-il%?-"‘ (7-17)
 2-e

a= - 51.429993 - 144.42923

3 = -.51.429993 + j44.42923

Ajz = 1.0309376 x 1074

Aq = - 5.15469 x 10 - 3. 9659133 X 10'5

Ay = -5.15469 x 10° -+ 5. 9569783 x 1079

T |
Ro(2) = Agp oy * Moy * Mg Tt A25 o (7-18)



83

] -3
Ay, = 3.5616776 x 10
. 7 ea70i -4
Ay = 7.6870834 x 10°
Ayy = -3.8435217 x 107% - j4.8499764 x 1074
Ayg - 3.8435217 x 1074 + j4.8499764 x 1074
N 21, 0zl
Aylz) = Ay 7oy * A3 * Mgy T * Ags T (7-19)
-e Z-g
A32 %_1'0 |
- -2
Agg= -2.2268891 x 10 R
Ay = 1.1134446 x 1072 + §1.6350537 x 1075

Ags = 1.1134446 x 1072 ~ 51.6350537 x 107°
- T (z+] T | z-1 z-1
A,(z) = A +Agy st Ayt A + A ;
4 N pn? M2 T Ras T Raa T Ras T
(7-20)
Agy = M.54837

Agp = 7.4564409
Ayq= -0.17352653

Aag = 8.6763263 XA]O"Z + 31.6520832 x 10-2

Ay = 8.6763263 x 1072 - §1.6520832 x 1072

" The fo]iowing system parameters are used for'SystemVZ. The

same expressions for Al(z); Az(z), Aa(z) and A4(z) are preserved.

H = 200 ft-1b-sec
Jg = 3.7 ft-lb-sec?
i B 4
[ KO-_‘ZX.IO
Ky = 3 X 103



-~
[

280 ft-1b/rad/sec

4 ft-1b/rad

2

10

-~
1

5

.
i

107 ft-1b-sec

v

QF
1]

-37.83783 - j35.651077

"

- -37.83783 + j35.651077

9.9999976 x 107"
5

Ayy= ~4.9999973 x 107

= 3.9999932 x 10°3

= -
\

- 4.8799929 x 10”4

=
I

Ayy = -2.43997 x 107% - 33150655 x

Ays = ~2.43997 x.107% + §3.150655 X
A, = 9.9999982 x 107"

- 2.8x102

=
|

2

1=
[

= 1.4000002 x 107% + j8.3391555

. .
1

= 1.4000002 x 1072 - j8.3391555

-
t

a1 = 39-999%85
= 4.8800011

e
I

1

o
I

43 " 4].51440]4 x 10

a=
1

s = 7.5720072 X 1072 + j1.1923421
2

A45 = 7.57200?2 x 10.

-.31.7923421

The COrrésponding coefficients in Eqs. (7:17) fhqughyi?-zo)

- §5.3066848 x 107>,
= ~4.9999973 x 107> + j5.3066848 x 107

0

10

%

X

It can be shown that if T approaches’ zero,

10”
10

-4

10°
107

-2
-2

the z-transfer function

“g(z) in Eq. (7-7) reverts to that of the continuous transfer function

a(s) of Ea. (1-16).
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| ‘The G(z) plots for system 1 and 2 are shown in Figureé 7-3-through'

;7—6. Since these plots are to'be used for predicting the existence of .
-se1f-sustained.o§ci]Tations.in the sampled-data system, the frequency
" of gscillations is’expresséd as an integral mu1tip1e of the sahp]ing
Wpériod T. Thus, the frequency quosci]Tatibn‘15'+epresented as.
W, = %—[ V ’ ., | (7—2'[),
for N = 2, 3, ..

The variousrpIOts of each system correspond to different values of
N, with T as a parameter. Figures 7-3 and 7-5 are for lower values of
T where as Figures 7-4 and Y—G-are for higher values of T.

Notice that for 1afge N ahd small T, the G{z) gurves approach that

‘of the continuous system transfer function G(s).
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8. The Discrete Describing Function of the CMG Frictional Nonlinearity

Iﬁ order to study the condition of self-sustained oscillations
of the LST system with sampled data, it is nécéssary‘to evaluate
the discrete describing function of the CMG frictiona1'non11nearity,
N(z). - | | | |
The firﬁt-stép in the derivation of N(z) involves the'intgr-
- changing of the positions of the non]inearity_and the zero-order
hold in Figure 8-T1a. This step is justified since the noniinéarity
| is amplitude dependent only, So that the.signa1 of TGF-iS not affected
‘by- this interchange. Figure 8-1b illustrates the trénsposition
between NL and zoh. |
‘The secondIStep involves the assunptfon that 6, is sinuéoida1§

that is,
eG(t) = Acos(wt + ¢) _ : o (8-1})
where A. w, and ¢ denote the hmp]itude, the frequency in radians,

and the phase inidegrees of the sinusoid, respectively;

The z-transform of eG(t) is

Lo 2 i |
0g(2) = T Acos(ZE + g)z7K o - (8-2)
S k=0 | |
or in closed form,
Az[(z ~ cos%ﬂicos¢ - sinﬁﬂsin¢] ‘
(8-3)

8.(z) =
G o z2 - 22cos%£-+ 1
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An important consideration is that because of the periodic
nature of the sampler, BG(t), SG*(t), and TGF*(t) are all periodic

functions of period NT, where N is a positive integer >2.

Therefore, w = 2n/NT, and wl = 2n/N.

9T

T o
zoh NL GF >
- Ter Tar
(b)
Figure 8-1



" The output of the nonlinearity in Figure 8-1b is denoted by -
TGF*(t), and its z-transform is TGF(Z)' The discrete describing

‘function (DDF) of the nonlinearity is defined as

N(z) = ~§ETET- ‘ 3 - (8-4)

It turns out that the discrete describing function (DDF) for
N = 2 must be derived separately, and a general expression for N(z)

can be obtained for all N > 3.

" The DDF for N = 2

© Let TGF(kT) denote the value of T..*(t) at t = kT. " For N = 2,

GF ,
the signal T *(t) is a periodic function with a period of 2T. The

z-transform of TGF*(t) is written

]

- Terl2)

2
TGF(O)Z + TGF(T)Z ]
7 (8‘3)
z- -1
For the CMG frictional non]inearity, it has been established
in chapter 2 that 4 | |

R
L T
Ter(®) = Terg— 1
AT

1 fVCQS(wt + ¢)]

g0  (86)

it

1 - cos(wt + ¢)]

T+ 22+ 278 )1 + 273
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- E___R’_T+ S[1 - cos(ut + ¢)] o
Ter(t) = Top ot - ~ 8 >0 (8-7)
: R-T1t E‘[] ~ cos{wt + ¢)]
Let us introduce the following notation:
TGF.'(kT) * Ter(t) ekt % _5.0 - - (8-8)
4 _ . ' -
Tep (KT} = Tee(t) |-t=kT 020 \ (8-9)
We have,
R arq’ 2wk
- - 31 - cos (5 + &)1 .
Tor (K1) = Tepg e 8 <0 (8-10)
: m"'é{'l -*CGS( +¢)]
Tee (KT) = Torgt S - cos(hk ML N 0 (8-11)
- -6 > )
6F oF0 T8 COS(an r o1 6
For N =2, (¢ #.+n/2)
TGF(O) = TGF-(OJ 0<d<m
= TGF+(G) T<$ <27
| (8-12)
Tee(T) = T (T) O<p< 7
= TGF;(T) | T <7'¢ < 2%
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Substituting N = 2 into Eq. (8-3), we have

Using Eqs. (8-5) and (8-13), the DDF for N = 2 is determined,

C Tae(0)z + T..(T)
GF GF
N(z) = A(z - T)cosd

Also, for N =2,z=-1, therlast equation'becomes

_ Terl®) - Tee(M
2Acos¢

N(z)

For stabi1ityJana1ysis, we define

. | 2Acos?
F(2) = = NGy = 700 - 1,00

~ The DDF for N > 3

(8-13)

(8-14)

(8-15)

(8-16)

In general, the z-transform of the output of the nonlinearity may

be written as

IS
T (kT
m=0 k=0 GF

it

Ter(2) )2k

N-1
N-k
Tae(kT)z
kZO GF

zN -1

(8-i7)
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Using Eq. (8- 2) for eG(z) the discrete descrjbing function
N(z) is written

! ' Tae(kT ' -
'i M) = e kzo o (8-18)
i 8,a(2) ( -1 Z ACOS(ka + ¢)z-k A :

The denominator of N(z) may be simplified as follows:

(N - Z Acos(zwk +¢)z7K = ) z\ cos(z'”k +¢) -AJ z'kcos(g%5~+ 'y
k=0 k=0
= A }j cos(z“k 0)2N k-1 (8-19)

"Thus,

Niz) = A2 — (23 (8-20)

As an alternative we may expand 2N o1 as

N-1 .
N o= (2 - IR,

(8-21)
k=0 '

Then, using Eq. (8-3) for 0.(z), N(z) is written
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N-1
Z TGF(kT)zN"k[z - 22cos§1T + 1]
. (8-22)
Mz) = 5o o
Az ~ Jz"km)!&z[(z - cosﬁﬂdcos¢ sin——s1n¢]
k=0
For N = 3, N(z) is simplified to
2
N(z) = TGF(O)z + TGF(T)Z f TGF(ZT) | | (8-23)
A(z - 1)L(z + 0.5)cos¢ - 0.86651n9] ‘
‘For N> 3,
N-1
| o ] Tep(km)z KT -
N(z) = 220 . (8-24)
A(z - 1) H (z - ernk/N)[(z - cusﬁﬂ)cos¢ - sin%ﬂsin¢]
. k=2 ‘ '
- where in general,
TerlkT) = Tgp (kT) o< 2k g <
| _ (8-25)
=T (k1) m<Z4gcon

N

where 0‘5_(2ﬁk/N + ¢) < 2m must be satisfied by appropriate conversion
of the ang]e 2rk/N + ¢. | |

For stability studies the critical regions of F(z) = -7/N(z)
shqu]d be constructed for N =2, 3, ..., with ¢ varied-from 0°% to

360°, and A from 0 to infinity.
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The following theorems on the properties of -1/N(z) are useful

for simplifying the task of the construcf1oh of the critical regions.

Theorem §-1

For any integhal N, the magnitude and phase of ~1/N(z) nepeat

jor everny ¢ = Iw/N radi
| Proof:

is written

.;A[

ans .

(2 - cos%ﬁacos¢ - sin——s1n¢](z -

L

F(Z) = - N(}z) = [

N-1
) TGF kT)zN k- 1](2 chos~—-+ 1)

Let:
F.(2)F,(z)
F(2) = EayFye
3 4
where

Fi(z) = -AL
Fylz).= 2"
Foz) = T
z) =.
3 k=0
-F#(;) = (z

(z - cos%ﬂqcos¢_--sinﬁﬂsin¢]_
-1

(kKT

- ZZCOSN"" 1

The negative inverse of the discrete describing function

- (8-26)

(8-27)

t3~23)

(3—29)

(8-30)

(8-31)
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Let
F(z)y = [F(2)]y . 4 4 21.r/N'
SR )y = tF1(1)1¢ - ¢+ zan
Fylzdy = [F3(z)]; = ¢ + 2m/N
Then, |
R R |Fa)y :
and -: ‘:

ArglF(z)] - Arg[F(z),] = ArglF,(2)] - ArglFy(2)]

Also,

172 = jAsin%E

[Fy(2)y| = lAsin%E

Let us express Fé(z)N as

- ArglF,(2)\] + Arg[F4(z),]

- 7@

(8-32)

| (8-33)

(8-34)
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(8-36)

| (8-37)
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Fé(z)N - :Z:TGF(gT)Nzﬁ“k“
vhere

Taf(kT)N = ek Iy = 4+ 2mn
It can be shown that for any integral N,

Fylz)y = 2Fa(z) =

Then, Eq. (8-35) becomes

F(z)] _ Falz)y i zF4(z) o
|F(z N F3 z)| F3 z

The argument of Fi(z) is

wrolFy ()1 = ¢ -2

- Then

Arg[Fi(2),] = ¢ - n/2 + 2/

Thus , Eq. (8-36) becomes

(8-39)

(8-40)

(8-41)

(8-42)

(8-43)

(8-44)
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rolF(2)] - AralF(z)y] = - &% - ArglFy(2)] + ArlF(z)y]

- - %ﬁ.- Arg[F4(z)] +,Afg[zF3(Z)]

= - - rolfyle)] + 5+ AralFy(2)]
| = 0 - . (8-45)
Q.E.D.
As an illustrative example of Theorem 8-1, let us consider the:
case of N = 4, |
a _ o=
Let 5 = YT = K
Then

- - R+ KR+ 1) cos(¢p + 2rk/N) - 1
Ter (kT) = 7% =i

¥ T)Lcos (6 ¥ 2nk/N GFO (8-46)

+ - K(R - 1)[cos{¢ + 2rk/N) - 1 ,
TGF.(RT) (R~ T)Teos ¢+ 2nk/N) 1}¢ero (8-47)

For 0 < ¢ <.1r,
Faz) = T (2% + T (M2 + TGF+(2T)Z + TGF+($T) (8-48)
Falzly GF (O)NZ * TGF (T)Nz + TGF (2T)yz + Tep (3T)y, (8-49)

"It is easy to see that
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Tar (O = Tge (T) .

+ .+
Tar (Thy = Tgr (2T)
(8-50) -
+ + ‘
Tep (2T)y = Tgp (3T)
Ter (3T = Tgr (O
which proves that F3(z)N = ZF3(z).
Similar results are obtained for = < b < 21,
- Theorem §-2 |
For odd N (N> 3}, the magnitude and phase of 41/N[z) repeat
for every ¢ = m/N. )
.Prqof: Let F(z)N, F}(Z)N, FS(Z)N now be defined‘as F(z),
F}(z), and F3(z) with ¢ replaced by ¢ + w/N, respectively.
Then, ' |
I AP S | ‘
Arg[F(z)] - Arg[F(z)y] = - § + Arg[F,y(z), 1 - ArglF,(2)] (8-52)

Using the same notation as in'Theorem 8F1, it can be shown that

for odd N > 3,



Py s W (8-53)
Thus,
ArglFy(2)d = v - W 1200 arglr (2))]
SRemelr@l (8-54)
Again,
- Fq(z)
Re il Fz = 1 | - (8-55)
and
ArglF(z)] - ArglF(z)y] = - § + ArglFa(z),] - Arg[Fy(z)]
=0 (8-56)
Q.E.D.

As an illustrative example of Theorem‘8-2, consider the case N = 3.
For 0 < ¢ <m,

Fa(z) = T (0)2°

* T (D2 + T (2m) (85T

oz

e - 2 + 4+
Falzly = T (O)y2" * Tgp (Thz + T (2T)y (8-58) |,

It can readily be shbwn that



Ter (O)y = TTG§+(2T)

Ter Dy ™ T (0) | . )
+ -

Tor (2T)y = Tge™(T)

To carry out one of the identities above,‘

T. “(T)y = Too B K(R - 1)} cos(¢ w) - T R -R - N(cose + 1
GF N GFO T - K(R - 1)[cos(op + n) - KIR =" T)(cosp + 1) GFO
| - : (8-60)
_ R+ K(R+ 1)(cosg - 1) | -
(©) = TergT=RR + Titcose = 1) o - (861
Using thé relation, R? +R/K7- 1 = 0, we have
Ter (Ty = ~Tgr (0) S e
Thus
Fylz)y = <2 TRy(2) o B  (8-63)

The significance of the last two theorems is that the critical
reg1ons of -1/N{z) need be computed only for 0° < ¢ < /N for odd
N, and 0 < ¢ < ZF/N for even N. \



Theoxrem &-3.

Asympotic Behavion of -1/N(z) as A approaches inginity.

(a) Lim|-1/N(z)| = = -
(@) &in
- (b) For even N > 4, 0 < ¢ < 2n/N.
tim Arg[-1/N(z)] = {5 - )7 + ¢
Ao
For odd N > 3, 0 < ¢ < w/N.
Lim Arg[-IN(2)] = (1 - DF+ 0

{c) ForN=2 0<¢s<m

Lim Arg[-1/N(z)] = 0° 0 < ¢ < /2

"

L /2 < ¢ g
(d) For N=3 0.<¢ <m/3

 2im Arg[-1/N(z)] = -‘§E-+-¢
Ao
Proof:_

We can easily show that

2im Tpp (KT} = -T
Broco GF -GFO

1 FOT) =
Lim Tgp" (KT) = Tgpy

Aree

(8-64)

(8-65)

(8:66)

(8-67)

(8-68)

(8-69)

-~ (8-70)
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The magnitude of -1/N(z) is directly proportional to A as

approaches infinity; thus (a) is proved.
For N=2 0<¢ 5_w/z

Flz) = -1/N(z) = TGF(‘zr?C?SiF(o)

Thus,

m Arg[F(z}] = &im Arg ﬁ?ﬁ\—c%
e mow UTGFT " TeF

This proves item'(c).

For N=3 0<¢<m/3

F(z) - -Al{z + 0.5)cos¢ - 0.8665in¢](z -1 |

Ter(0)2% + Tep(Tz + Tee(2T)

ﬁ,an ArglF(z)1

Ao

= --gﬂ - Arg[-z2 -z+ 1]+ ¢

This proves item (d).

ST, |
- - &im ArglTep(0)2° + Tee(T)z + Tee(21)] + ¢

(8-71)

(8-72)

{8-73) .

(8-74)
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For N > 4 and even 0 <'¢ < 2n/N

Using Egs. (8-27) through (8-31), we have'

Lim Arg[F(z)] = £im*[Ar9[F](2)] + Arg[F,(2)] - Arg[Fy(2)] - Arg[F,(2)]
Poseo R | | |

= ¢ - 5 - Lim |Arg[F.(2z)]] + Arg[F (2)] - arglF,{z)]
z ( 3 ] 2 4 ' (8.75)

i Ne2 o
Arg[F,(z)] - Arg[F,(z)] = Arg[(z - ])kné(z . eJ2mk/Ny

o Ne2 . ' -
_ Arg[ejﬂ/N(eJﬂ[N _ e-Jﬁ/N) I éJZH/N(I ) eJZw/N(k~1))] | (8-76)

k=2

106

‘ | ' : . -. N-3 :
Ar‘g[Fz(z)] - Arg[F4(z)] = Ar-g[eJﬂ/N(eJﬂ'/N —.e‘j“/N)(eJZT{/N)N-B I (] _ ejZ'ﬂ'k/N)]
_ T ke ‘

zqﬂ

N-3 L
* 5+ (N - 3)( ey o Argkn'zEWk/N( -k /N +JTrk/N)

]

HENCE 3)( £y + (N -8 (-3) + Z o (8-77)

. ’ N-] Nek-1
Lim Arg[F (z)] = £&m Arg z TGF(kT)z mh

Ao’



N-K-1 N-k-1
= Arg = Thapnt + Arg Trenl
N/2-1 L (e
BRI Tepg? - fN “7°N (8-78)

Thus,

_

A 1 : N-3
g rRr M- aGH 0@y TH-FeF

ﬁff-m Arg[F(z)]

N-3 - :
=(3.-.N_4 k |
= (3 >~ Nt kgi N)w )

\
——
l—l
-l

=7 - ﬁ)ﬂ.+ ¢ | “ : ‘ (8-79)

For N >3 and odd 0 < ¢ < /N

f For this case,

Lim Arg[F (z)1=Arg § -1 VR Arg T N-k-1
oom Arelts "9 eFo kg}‘ sz 6FO0

H
-
1
L7t
=

2N o '_  (8-80)

Thds,
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i&mArg[F(z)]=¢-—+ +(N-4)(--)+(N-- 3)( )+ X

(3-8-1+ T Ky g
27T L, N
(- D5+ s

and (b} is proved. Q.E.D.
Theorem §-4.

Abgmptoucﬁehavion_oﬁ -1/N(z) as A approaches ze)w.

Lim F(z) = ~ —L

2

for ail ¢ and all N.
- Proof: From Eq. (8-20), for N > 3,
N-1 -
A Z cos(gﬁ—“ ¥ )Nk

F(z) = - gry =
N(Z) i:l'r F(kT)ZN -k-1

| Z CDS(Zkﬂ d))ZN k ]
K Lim F(z) =

N-T Tg (kT)
A0 k=0 :

SN -3

2N

(8-81)

(8-82)

(8-83)
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N-1

_kzocos 2'(11' ¢) N- k 1 .
S gim ST, Ter T k- 1 . (884
A'
k=0 A0

Ter(kT)

Therefore, the problem is that of finding %ﬁg A

First, let TGF(kT) = TGF (kT). Then

- | 2k
wn e K AR 1T~ Vero * Vgroeos G + o)
Ao A a0 O TGFOA YTGFOACOS(EWk to)tg +']

“H

ZTrk -
Tgro &om —(—_TR T+ Vgro Leos(BRE + 9) - 1] (8-85)

.where the fact that &m [1/(R+ 1)] = 1 has been used.’
A0 .

; 2 2
‘- : T A™ + 1]
) R - R .1 ] : GFO :
CRim = Lim g = Lim - + (8-86)
e ATR"{'U_' oo B a0 Al AT j p YETGFOZAZ J |
Or,
‘ // .
. R i 1 'E 2 2,2
£im ARF IV Lim ¢ v 1+ 4T, A (8-87)

109



2 2,2

110

ExpandinQN/T + 4y TGFO A" into a power series, and using only the

first two termé, we have,

- ¢v TGFO p2 ] |
A+0 (R‘+'1) A+0 A . YTaro

Thus,
(kT) .
F 2 Zﬂk
w TR T Yaro * YTerg “Leos(5< + ) - 1]
YTGFD Cos (Eﬂk + ¢)
Similarly, it can be shown that
T +(kT) Top (KT)
GF . GF 2k
A - kim - o 7 Peos
oo B ag K Yero Gy * o
Now,
N-T -
5 CDS(ZWk )ZN-k—}
im F(z) = —3 e
A0 YTero Z COS(Z££.+ $zv N Tero-

for all ¢ and all N > 3.

(8-88)

(8-89)

(8-90)

(8-91)



For N =

Q.E.D.

m

| 2A cos |
gim F(z) = &im *—“THTQT-T_T
a0 a0 Tert ) Tgptl

= 1 2A cos_¢ ‘
= kmm R %
B0 7o BT F Ylgpahllteose) gy - vTggghll-cose)
1 v 7GR0 TT1
R+ Y TgroA(1¥cose) w7 + YTapoAl1-cose)
- -~ | - (8-92)
"Tgro A



8. Discrete Describihg Function Plots of the CMG Frictional Nonlinearity

The d1screte descr1b1ng funct1om N{z}, for the CMG frictional
non]vnear1ty is derived in Chapter 8 for integral values of N > 2.
The p]ots of -1/N(z) together with that of G(z) in the frequency-domain
allow the study of the condition 6f self-sustained oscillations of the
LST system with sampled data. | |

For N = 2, the expression for F(z)r= -1/N(z) isrgiven by Eq. (8-16).
Figure 9-1 shows the F(z) plot for N = 2 in the Qain-phaéecoordinates

with 0 < A < m'ahd various values of ¢; The value of v is ].3BXT05. rNote

" that the plot stays on the -180° and - 3600 axes.

In general, N{(z) for N> 3 is given by Eq. (8-20). Figure 9-2 shows
the gain-phase plot for F(z) when N = 3. The curves for several values of

¢ are plotted to illustrate the effect of varying the phase of the input

‘signal to the nonlinearity.. It should be noted that the values of F(i)

repeat every 60 degrees starting from ¢ = 0°. As the magnitude of the
input signal, A, approaches‘infinity, fhe bounds of F(z) are at -240°
and -300°. Figﬁres 9-3 énd 9-4 illustrate the F(z) plots for N = 4 and
N ='5,respect1vé]y. Eor N = 4, the F(z) plot extends from -315° to
-225%, and for N = 5, the span is from -288° to -252°.

For stability analysis, it is sufficient to considef only the
bounds of the F(z) plot for a fixed N. Self-sustained oscillations |
characterized by N may occur if sz) intersécts with any part of the

F(z) plot. The region bounded by all the F{z) curves for a given N is

defined as the "critical region". In Figure 9-5 the critical region for
= 6 is shown, without éhowing.a11 the curves of F(z) for various

values of ¢. Similarly, Figures 9-6 through 9-8 show the critical regions

~ for N = 8, 20, and 50, respectively. The general shapé of the critical

112.
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regions for other values of N is easily visualized. Fufthérmofe, Theorems
8-3 and 8-4 on the asymptotic behavior of F(z) as A + = and A » o are useful
in generating the critical regions. It is interesting to note that as N
approaches infinity, F(z) approaches -1/N of the continuous-data non-

linearity, as shown in Figure 9-8.
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10.  Computer Simulation of the Simplified Sampled-Data LST System

with the Analytical CMG Frittiohal Torque Expressions

A computer simu]étion_of the Sampled-Data LSTﬁSystém is presented
here to corroborate the results of the discrete describing function
analysis of thé-1ast two chapters. Since the analysis has-been'cafried
out with the analytical torgue expressiohs for the CMG frictional
nonlinearity, the simu]atién model of the nonlinearity a]sb has the
same characteristics. | |

Thé simp]ified sampled-data LST system is representéd by the block
diagram of Figure 7-11 Although for ané]yti§a1 cohvenienc? the

discrete describing function analysis has been carried out with two

- samplers present in the system, the actual system has only one sampler.

This is‘at the input to the CMG gimbal drive and there is no sampler
in the nonlinearity 1loop. Consequent]y,_the simulations have been

performed with the two¥samp1er as well as the one-samplér system models.

. The numer1ca] values used in the s1mu]at1on mode] correspond to those

of System 1 in Chapter 6.

The G(z) plots of Figures 7-3 and 7-4 and the-1/N(z) plots of
Figures 9-1 through 9-9 ;how-that_fOr y = ].38x105 self-sustained
osci]]a;ions will not exist if T is less than 0.25 seconds apprdximate]y.
For larger values of vy the plots in Figures 3-1 through 9-9 shift
downward appropriately. Thus, with vy = 1.38x107 the Towest point in
the —]/N(z) curves becomes approximately -102 db, yielding a system in
Which self-sustained oscillations will always exist for any sampling
period. The periods of these oscillations depend on the sampling

period used.
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For the computer simulation, the input to the LST system, y, is
set to zero, along with all the initial stateﬁ, except for the vehicle
position ev; The following quantities are p]btted from the simulation

runs

By =‘§ehic1e,position (radiansx

wy = vehicle velocity {(radians/second)

8g = Gimbal position (radians)

we ='Gfmba1 velocity (radians/second)

TGF': Torque output of the nonlinearity (ft—}b)

Error = Error input command to the CMG (radians/second)

X Koy ~Kyuy
Figures.lo-l fhrﬁugh 10-8 show the simulation results with y = 1.38x]05.
Two différent'samp]ing perfods, T =0.005 sec and T = 0.1 sec are
consfdered with-both the one-sampler and the two-sampler system models.
Table 10-1 provides the details of each of these simylation.runs. Note |
that, as predicted, both the system models are stable with the sampling

periods considered and no self-sustained oscillations exist.

Table 10-1. Computer Simulations with v %_].BBXJOS.

Figure No. No. of Samplers in  Sampling Period . Initial Value
" System Model - T{sec) . o_f.__a_v(rad)
10-1, 10-2 2 ' 0.005 C 1.x1070
10-3, 10-4 1 ©0.005 O 1.x107
10-5, 10-6 - | 0.1 | 1.x107®

10-7, 10-8 o 0 1.x1078



T

Figures 10-9 through 10-30 show the simulation-results with

1

Y 1.38x]0?.' Several sampling periods from T = 0.005 sec up to

n

The details of the simulation parameters and the oscillation periods
are shown in Table 10-2. Note that the pne-sémpierlaﬁd two-sampler
system models a]wa}s oscillate with periods ciose to_tﬁbse which‘are:
_predictéd by the -1/N{(z) and'G(z) plots. A1thbugh-tﬁe two-sampler
model is in closer agreement with the theoret1cal pred1ct1ons, these
results do Justify the approximation of 1ntroduc1ng the sampler.

Note aiso that for some sampling periods (eg. 0.02 'sec) although the
gne-sampler mode] and the two-sampler model oscillate w1th per10ds
‘which differ considerably (0.04 sec and 1.76 sec, respect1ve1y) both
periods are in fact_predictgd by the fheory.

From the stahdboint‘of self-sustained oSci]létions, if y is at its

nominal va]ue of 1. SBXIOS any sampling period less than 0.25 seconds,-

appr0x1mate1y shou]d yield a stable system. HoweVer other'pract1ca1
cons1derat1ons and stability cons1derat1ons due to nnon-zero 1nputs

wou1d limit the samp11ng period to a much Tower vaTue

0.25 sec are used with both the one- and 2-sampler system models.
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Table 10-2. Computer Simulations with y = 1.38x107
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Figure No.

No. of Samplers Sampﬂng Initial Value Oscillation

in System Mode]l Period of ev(rad) Period (sec)

a T{sec) (NT)
10-9, 10-10 2 0.005 1.x1078 1.58 (316T)
10-11, 10-12 L 0.005 1.x107° 1.88  (376T)
10-13, 10-14 2 0.02 1.x1077 0.04 (2T)
10-15, 10-16 . 2 0.02 Continuation

of 10-13, 0.04 (2T)
| | 10-14 ‘

10-17, 10-18 1 0.02 5.x107° © 1.76 (88T)
10-19, 10-20 2 0.05 1.x107% - 0.1 (2T)
10-21, 10-22 1 "~ 0.05 1.x107® 1.25 (25T)
10-23, 10-24 2 0. 1.x10"% 1.0 (107)
10-25, 10-26 1 ' 0.1 1.x10-% 1.2 (Q12T)
10-27, 10-28 2 0.25 1.x10°7 0.5 (2T)
10-29, 10-30 ] ~ 0.25 1.x10°7 © 0,75 (37)
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